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U N D E R  A L A Y E R  OF  W A T E R  
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We consider a mathematical model of heat exchange in strainless successive high-frequencv-current 
hardening of the working supfaces of gears. The dynamics of the process of heating and cooling is 
analyzed, its ,special features are indicated, and the advantages of the technology of hardening gear 
tooths by this technique are considered. 

Introduction. A technology of strainless contour hardening of the toothed surface of gears in induction 
heating under a layer of running water has been developed, introduced into production, and used at the Minsk 
Automobile Plant and the Minsk Plant of Wheeled Tractors [1, 2]. The technique suggested is distinguished by 
absence of thermal strains, high rates of heating (up to 10,000 °C/sec) and cooling (to 6000 °C/sec), high hard- 
ness of the surface treated (58-62 HRC for steels containing 0.38---0.45% carbon), economic efficiency, and 
environmental safety. Metallographic and x-ray examinations of gears hardened according to this technology 
were carried out in [3-5]. Below we consider problems of numerical calculation of the thermokinetic parame- 
ters of heating and cooling a layer of the toothed surface of gears subjected to induction hardening. 

Determination of the Thermokinetic Parameters  of Hardening.  A schematic representation of  in- 
duction hardening of a toothed surface is given in Fig. 1. The hardening begins with rapid heating of  a narrow 
3-5-mm-wide strip along the upper edge of the lateral surface of a tooth over the entire length treated. The 
inductor wire moves continuously relative to the hardened toothed surface from the tooth point to the tooth 
space and then to the point of a neighboring tooth, successively traversing its surface from point I to point 7 
(Fig. !). The entire cycle of hardening from the first to the last tooth proceeds automatically and then the 
machine tool trips open. The total hardening time tbr the entire surface of  one tooth space is i .5-3 sec, and 
the hardening time for the entire gear is 3-6 min. 

The treated toothed surface of the gear is heated according to the considered technology at a rate at- 
taining 10,000 °C/see under a layer of running water, with the gap between the inductor and the heated surface 
being 0.3-0.6 ram. Under these conditions direct measurements of temperature are virtually unfeasible by avail- 
able methods. In this connection it is of interest to calculate the heating temperature and the heating and cool- 
ing rate by the method of mathematical computer simulation of the process of induction hardening of  a toothed 
surface. In calculations, the rate and electrical parameters of heating and the thermophysical and electrical 
properties of the steels used and the cooling medium were taken into account. 

The mathematical model for determining the temperature fields in a material subjected to high-fre- 
quency currents is based on solution of the well-known Fourier heat-conduction equation, which in the pres- 
ence of internal heat sources has the form [6] 

cp (T) p (T) OT (r--~, ~) - -  + V ( -  ~ (T) VT (r ~ ,  x)) = Qv (r-:--~, ~).  (1) 
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Fig. 1. Position of  control points 1-7, the inductor 8, an elementary hot 
zone in the process of hardening 9, and the calculated hardened layer 10 
in the cross section of  the toothed surface of a gear of the wheel transmis- 

sion of an MAZ truck. 

Fig. 2. Spatial discretization of a gear fragment. 

The boundary conditions for Eq. (1) that allow for convective and radiative mechanisms of heat trans- 

fer from the body surface can be written in the tbrm 

- Z (73 a T  ( ;2" t )  = a (73 (T (r--~, z) - Ten ) + 8 0  (T  4 (r-7 >, z)  - T~en) . (2) 
0,,-+ 

At the initial instant ('¢ = 0) we assign the temperature distribution in the body: 

T (,-2, ~)I ~)= r . .  (3) 

The temperature of a piece is determined by solving heat-conduction equation (1) with boundary con- 
ditions (2) and initial conditions (3). The indicated system is solved by the finite-elements method [7]. Accord- 
ing to this method, spatial discretization of the computational domain is carried out (Fig. 2), which yields a 
certain number of elements of division (N e) and nodal points (Np) at which the temperature is calculated. For 
each i-th nodal point (! <_i<_Np) the basis functions ~i(r-~ are introduced in such a way that ~i(G-~ = 1 and 
~i(r~-~ = 0, V j :g: i, where I < / <  Np, i.e., the function ~i represents a hyperpyramid constructed above the i-th 
nodal point. Then the temperature T(r-+, z) can be expressed in terms of the basis functions in the tbllowing 

way: 
Up 

T (r-~,~) = ~ Tj (z) Vj (r---~. (4) 

j= l  

To determine Tj, we use the Bubnov-Galerkin method, in contbrmity with which for each 1 _< i _< Np 
Eq. (1) yields 

I aT (r-2~) III c , , ( . o ( n T  
W 

+ V ( -  2, (7) VT (r-~, ~)) - Qv (r-+, ~)) ~i (r-->) dw = O, (5) 

N e 

where W = u A,, is the computational domain; A,, is the e-th element of division. 
e=l 

With account for Eq. (4), Eqs. (5) are reduced to the system of linear equations 

N N e 

i aTj (,t) 
j= l  e=l  Ae 
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up U~ +EZJ(T')ElIII~'(T)Vllli(r--~Vl]lJ(r-->)dw+I!wi(r-->)~lJ(r-->)~(T)ds)=j= l e =  1 A,, 

N N 

e =  1 A e e =  1 

where the quantities ~(T) and ~(T), with account for boundary conditions (2), are defined as follows: 

( n  ( r  + + C . ) .  ¢) = a (T, 

Here ~A e is the face of the e-th element belonging to the surface of the piece. 
For further consideration it is convenient to write the system of equations (6) in matrix form: 

8T (x) 
1W'(x). ~ + M  x(~)- T(~)=Y (z), 

(6) 

(7) 

(8) 

where Y(x) and T(x) are the vectors of the values on the right-hand side of system (8) and the temperature at 
the nodal points of the computational grid; the superscripts ~, and c indicate, respectively, the thermal conduc- 
tivity and heat capacity coefficients that determine the matrix. Equation (8) is solved by the Crank-Nicoison 
difference scheme [8]: 

^ T (x  k + l ) - T ( k )  I ^ (k+l ^ (9) 
M '  ('c) At + ~ M )~ (x) • (T ) + T (k))  = y (x),  

where Ax = T '( '+1 - 'L ' 'k is the time step. With account for Eq. (9), we can write an expression to determine 

T(l:k+l): 

T ("c k+l) = (Mr) -l • [M 0 - T (h) + Y0l, (10) 

where 

^ ~ ^ 
M ~ = M  c -  I~l ~" M0=I~I"+ Ax ^ , -~-M , Y0=A~Y- 

Taking into account the fact that the resulting matrices M~ and Mo are band-type and positive definite, 
it is convenient to invert the matrix Mz in expression (10) by Kholesskii's method [8], which requires less 
computer resources for storing and solving the matrices. 

With allowance for the above the algorithm for calculation of the temperature fields T(r-~, z) can be 
represented in the following way: 

1) the initial distribution of temperature T0(r-~is prescribed, ~ = 0; 
2) the next instant zk+l = ~ + Ax is determined; 
3) the volumetric density of the internal heat sources Qv(r-~, ~) at the nodal points of the computational 

grid and the coefficients ~(T) and ~(T) are determined; 
4) according to the above-described method of solving the heat-conduction equation (1) and in accord- 

ance with Eq. (6) the matrices M~ and M0 and the vector of the fight-hand side Y('c) are filled and then, in 
accordance with Eq. (10), the temperatures at the nodal points Ti('(+~) of the computational grid are calculated; 

5) if the computational time is smaller than the prescribed one, the calculation is repeated from item 2. 
Determination of the Volumetric Density of the Internal Heat Sources. The volumetric density of 

the internal heat sources is defined by the expression [9] 
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Fig. 3. Distribution of  the current density over the cross section of the 
heated material. 

1 
Qv (r-~, x) = ~ p (T (t-:~)) 5~ (r-~, "c), (1 I) 

where 19 is the specific electrical resistance of the heated material, f~-m. The density of the current within the 
material depends on the surface density o f  the current ~Sm.s: 

6 m (r,---~'¢) = 6n,.s ('t') exp (-- d (r--))/A), (12) 

is the depth of current penetration, m. By virtue of the fact that JJ and p are functions of temperature, in what 
follows, according to the method of calculation of inductors [9], the quantity A will be understood to mean the 
e f f e c t i v e  depth of penetration of the current: 

AK (14) A--- 
~ 2 K  cos ¢p' 

where A K = 503~/pK/f is the depth of current penetration into the material heated above the temperature of 
magnetic transformations (TK = 750°C), the so-called "hot" penetration depth. 

In accordance with the indicated method, we consider a two-layer material: one layer of thickness dK 
is heated above TK, and the temperature of  the other layer is lower (Fig. 3). According to this method, the 
coefficient K entering Eq. (14) and the angle ~p are defined by the following expressions [9]: 

m = ( 1 - X/pg la/lag p ) / (  1 + ~/pg ~t/~K p) " 

rc'~ 2m exp ( -  o0 sin (or) 

tan t p - 4 j -  1 -  exp(-2o~) 
m2 , Ot=2dK/A K ; (15) 

K = ~/(1 - m 2 exp (- 2~)) 2 + 4m 2 exp (- 2~) sin 2 (~t) 
9 

1 + m- exp ( -  2cz) + 2m exp (-  cz) cos (c~) 

The current density on the surface of the heated piece is calculated proceeding from the current 
strength in the inductor, the effective penetration depth of the current, and the equivalent width of the heated 
strip (Fig. 4): 
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Fig. 4. Schematic diagram for calculating the electrical resistance o f  the 

system. 

li (16) 
~3m"~- aA " 

The current strength in the inductor is determined in terms of  the generator power and the resistance 

o f  the inductor-piece system: 

(17) 
1 i = r i P / z  , 

where r I is a correction factor that takes into account the losses in the electrical circuit before the inductor. 

The resistance of  the inductor-piece system is 

Z = N/(r i + r) 2 + (x i + x + x,~) 2 , (18) 

where xg is the reactive resistance determined by the magnetic flux in the air gap. The electrical resistance o f  

an inductor that has w closely wound turns is 

r i = x i = w - -  
/1;Di Pi 2/'t'Di Pi (19) 

- - W  

b A i a A i ' 

where Di is the equivalent inside diameter o f  the inductor; b = a / w  is the width o f  a turn of  the inductor in 

the case o f  close winding. The electrical resistance of  the piece is 

nDp (20) 
aA 

(D is the equivalent diameter of  the piece). The reactive resistance of  the air gap is 

Xg = 2n f lXoW2 - -  (21) 
a 

where I-t0 = 4n. 10 -7 H/m is the magnetic permeability o f  vacuum; Sh = Lh is the cross-sectional area of  the air 
gap, m 2 (L is the inductor length, h is the gap (Fig. 4) between the piece and the inductor). For a cylindrical 

inductor we have Sh = /1;(Di + D ) h / 2 .  
Taking into account the aforesaid, the expression for the volumetric density o f  the internal heat sources 

in the case o f  inductive heating can be written in the tol lowing form: 

P ('0 
Qv (r, -~t) = riP , exp ( -  2d (r-:-'))/A), (22) 

2z (aA)" 
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Fig. 5. Calculation of the equivalent heated strip for an inductor with a 
circular cross section. 

In expression (22) all the quantities are defined by the above formulas, except for the equivalent width of the 
strip heated. According to the method of calculation of inductors [9], for rectangular inductors (Fig. 4) the 
width of this strip is taken to be equal to the width of the inductor, i.e., a = ai. 

For an inductor with a circular cross section of the wire no recommendations are given. In view of 
this, to determine the equivalent heated strip a model is suggested that is based on the assumption that 

~m.s = 8n~) (h~/h) 2" (23)  

Then the magnitude of the equivalent heated strip is determined from the condition of equality of  heated cross 
sections (Fig. 5): 

dx, (24) 
"~e 2 / 

th (.,)) 

" + x -  - R ,  tl (x) : X/(R + h0)- (25) 

where R is the radius of the cross section of the induction wire; x~ and x2 are the coordinates of the beginning 
and the end of the heated piece with account taken of the fact that the coordinate origin lies directly under the 
inductor (Fig. 5). 

When an inductor with a circular cross section heats more than one side of  a piece (see Fig. 2), the 
volumetric density of heat generation is calculated separately tbr each side proceeding from the /'act that there 
are several heating strips connected in parallel. Then the total electrical resistance of the inductor-piece system 

is 

t /  

z=l/  lJz,, 
i=1 

(26) 

where zi is the electrical resistance of the system consisting of the i-th strip being heated and the corresponding 
strip on the inductor. For the current density on the surface of the i-th strip the following expressions can be 
obtained: 

4 Ih=/ (27) 
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Fig. 6. Thermal curves of heating and cooling at control points 1-7, con- 
structed computationally for the process of induction hardening of  the 
toothed surface of a gear of the wheel transmission of  an MAZ truck. 
Conditions of hardening: generator power 160 kW, speed of inductor mo- 
tion over the middle part of the involute 15 mm/sec, inducting-wire di- 
ameter 2.6 mm, gap between the inducting wire and the treated surface 
0.5 mm. T, °C; z, sec. 

where ai is the equivalent strip being heated on the i-th side undergoing heating; hi is the gap between the 
inductor and the piece on the i-th side being heated; h m i  n is the minimum inductor-piece gap over all the sur- 
faces being heated. 

Considering what has been said above, the expression for the volumetric density of tile internal heat 
sources on the i-th heated side in induction heating can be written in the form 

i ___> _ _ _ P  ('~) 2 ~, (hmin) 4 exp ( -  2d (r-'>)/Ai). (28) Qv (r, ~)= qpi 

The devised program of mathematical simulation of induction heating and cooling of the toothed sur- 
face of gears allows one to carry out a theoretical construction of thermal curves of heating and cooling for 
any point of the surface and core of the gear treated. Figure 6 shows thermal curves of heating for hardening 
and cooling calculated by the method of computer simulation for each of the seven control points of the 
toothed surface (see Fig. 1). 

The differences in the shape of the thermal curves for different zones and stages of heating agree with 
the physical toundations of induction heating and correspond to the hardening results obtained. At the tip the 
induction current is concentrated on a narrow edge, the heat removal into the interior of the piece is smallest, 
and therefore both during entry of the inductor into the tooth space (Fig. 1, point 1) and during exit from it 
(point 7) the heating rate is greatest. 

Of interest is the character of the thermal curves for points 3, 4, and 5. When the inductor approaches 
point 3, the surface of the tooth in this zone is first heated rapidly, and then the heating decreases as a result 
of loss of magnetic properties by the surface layers of the metal and uptake of part of the power by the ap- 
proached surface. Simultaneously with the continuing heating of zone 3 heating of zone 4 in the tooth space 
and zone 5 of the opposite lateral surface of the tooth begins. In view of the simultaneous removal of power 
by zones 3, 4, and 5 and also of the fact that the removal of heat into the boundary parts of the metal is 
greatest for zone 4, the heating rate at this point is considerably lower than for points 1, 2, 6, and 7. Since the 
inductor is close to point 3, the temperature in it in this period is maintained virtual ly constant for some time. 
As the inductor leaves the tooth space, the stage of cooling begins simultaneously at points 3 and 4. 

For point 5 heating begins at a time when heating for points 3 and 4 still continues. Theretbre in the 
initial period the heating rate in it is relatively reduced. After the inductor recedes from points 3 and 4, the 
energy emitted by the inductor is concentrated in zone 5, and the heating rate in it increases sharply. When the 
inductor recedes from this point, the stage of  cooling begins in it. 
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Thus, the calculated rate of heating of the treated surface at the tooth tips for zones 1 and 7 attains 
10,000 °C/sec and in the space (point 4) it attains 5000 °C/sec. The temperature of surface heating attains 
1100-1400°C. The calculated rate of cooling of the surface being hardened is 1000-6000 °C/sec. The calcu- 
lated data agree well with the values actually obtained for the depth of hardening, evaluated by the hardness 
and structure of  the hardened zone in the process of metallographic examinations. The theoretical position of 
the layer of surface hardening shown in Fig. 1 agrees with the actually obtained position of the hardened layer 
over the cross section of the toothed surface of gears. 

Conclusion.  Mathematical simulation of induction heating of the toothed surface of  gears makes it pos- 
sible to determine the dependence of the thickness and the character of disposition of the hardened layer on the 
treated surface on the parameters of the inductor and the high-frequency source used and the geometric dimen- 
sions and the grade of steel of the gear treated. Mathematical prediction of the results of  hardening reduces 
labor and time expenditures when selecting high-frequency sources, technological parameters of hardening, and 
the structure of  hardening devices. 

N O T A T I O N  

T(r,-~x), temperature of the body at the radius vector r---'~t time ~, °C; Cp, p, and ~, heat capacity, density, 
and thermal conductivity of the material of the body, J/(kg.K), kg/m 3, W/(m.K), respectively; Q~(r-ff, "~), volumet- 
ric density of  the internal heat sources due to absorption of electromagnetic energy, W]m3; n---~, external normal 
to the surface of  the piece; e, emissivity of the surface; cy = 5.67.10 -~ W/(m2.K4), Stefan-Boltzmann constant; 
(x, coefficient of  heat transfer from the piece into the surrounding medium, W/(m2-C); ~i, current density in the 
material, A/m2; d, distance from the point having the radius vector i"--> to the surface of the piece; g, relative 
magnetic permeability of the material; f, current frequency in the inductor, Hz; I, strength of  the current, A; a, 
equivalent width of the heated strip, m; P, power of the generator, W; z, electrical resistance of the inductor- 
piece system, f~; r and x, active and reactive electrical resistance, respectively, fL Subscripts: en, environment; 
p, nodal point; e, element of the discretization; s, surface of the piece; m, material of the piece; i, inductor. The 
sign ^ indicates the mean value of some quantity during a certain interval of time. 
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